منابع مشابه
Chemistry for peptide and protein PEGylation.
Poly(ethylene glycol) (PEG) is a highly investigated polymer for the covalent modification of biological macromolecules and surfaces for many pharmaceutical and biotechnical applications. In the modification of biological macromolecules, peptides and proteins are of extreme importance. Reasons for PEGylation (i.e. the covalent attachment of PEG) of peptides and proteins are numerous and include...
متن کاملPeptide and protein PEGylation: a review of problems and solutions.
The paper discusses general problems in using PEG for conjugation to high or low molecular weight molecules. Methods of binding PEG to different functional groups in macromolecules is reported together with their eventual limitations. Problems encountered in conjugation, such as the evaluation of the number of PEG chains bound, the localisation of the site of conjugation in polypeptides and the...
متن کاملThe DinI protein stabilizes RecA protein filaments.
When DinI is present at concentrations that are stoichiometric with those of RecA or somewhat greater, DinI has a substantial stabilizing effect on RecA filaments bound to DNA. Exchange of RecA between free and bound forms was almost entirely suppressed, and highly stable filaments were documented with several different experimental methods. DinI-mediated stabilization did not affect RecA-media...
متن کاملThe Molecular Tweezer CLR01 Stabilizes a Disordered Protein–Protein Interface
Protein regions that are involved in protein-protein interactions (PPIs) very often display a high degree of intrinsic disorder, which is reduced during the recognition process. A prime example is binding of the rigid 14-3-3 adapter proteins to their numerous partner proteins, whose recognition motifs undergo an extensive disorder-to-order transition. In this context, it is highly desirable to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2014
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2013.11.3693